Composition Operator on Bergman-Orlicz Space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition Operator on Bergman-Orlicz Space

Recommended by Shusen Ding Let D denote the open unit disk in the complex plane and let dAz denote the normalized area measure on D. Φ α is defined as follows L Φ α {f ∈ HD : D ΦΦlog |fz|1 − |z| 2 α dAz < ∞}. Let ϕ be an analytic self-map of D. The composition operator C ϕ induced by ϕ is defined by C ϕ f f • ϕ for f analytic in D. We prove that the composition operator C ϕ is compact on L Φ α ...

متن کامل

Compact Composition Operator on Weighted Bergman-Orlicz Space

In this paper we study the weighted Bergman-Orlicz spaces Aα. Among other properties we get that Aα is a Banach space with the Luxemburg norm. We show that the set of analytic polynomials is dense in Aα. We also study compactness and continuity of the composition operator on Aα. Mathematics Subject Classification: 46E30, 47B33

متن کامل

Compact composition operators on Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball

Using recent characterizations of the compactness of composition operators on HardyOrlicz and Bergman-Orlicz spaces on the ball ([2, 3]), we first show that a composition operator which is compact on every Hardy-Orlicz (or Bergman-Orlicz) space has to be compact on H∞. Then, although it is well-known that a map whose range is contained in some nice Korányi approach region induces a compact comp...

متن کامل

Carleson Measure in Bergman-Orlicz Space of Polydisc

and Applied Analysis 3 2. Main Results and Proofs Lemma 2.1. For α α1, . . . , αn ∈ D, let uα z1, . . . , zn ∏n j 1 1 − |αj |2 / 1 − αjzj . Then uα z1, . . . , zn ∈ Lφa D , and ‖uα z ‖σn ≤ 1 φ−1 ∏n j 1 ( 1/δ2 j )) . 2.1 Proof. It is easy to see that ‖uα z ‖∞ ∏n j 1 1 |αj | / 1 − |αj | 2 ∏n j 1 2 − δj /δj . Since φ 0 0, the convexity of φ implies φ ax ≤ aφ x for 0 ≤ a ≤ 1. Hence, for every C > 0...

متن کامل

On a Class of Composition Operators on Bergman Space

Let D= {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let A2(D) be the space of analytic functions on D square integrable with respect to the measure dA(z) = (1/π)dx dy. Given a ∈D and f any measurable function on D, we define the function Ca f by Ca f (z) = f (φa(z)), where φa ∈ Aut(D). The map Ca is a composition operator on L2(D,dA) and A2(D) for all a ∈D. Let (A2(D)) be the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2009

ISSN: 1029-242X

DOI: 10.1155/2009/832686